

國中學生視力不良 之特性分析

教育部統計處 金允文

研究動機及現況分析

研究方法

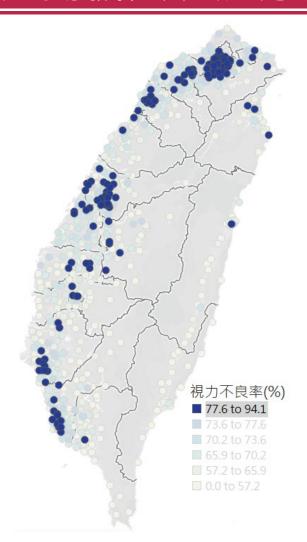
實證結果

結論與建議

1-1 研究動機與現況分析

- ○國中學生因升學壓力和接觸3C更為頻繁等因素,用眼過度之風險增加,視力惡化之議題備受各界關注。
- ○期藉研究結果,發掘學生視力不良率較高學校之特性,並分析其空間異質性,作為制定視力保健相關政策之重要參據。
 - ○其中一眼裸視視力未達0.9即為視力不良

1-2 研究動機與現況分析


O視力不良率隨年級增加而上升

111學年國中學生視力不良率為73.16%,按年級觀察,國中1年級學生視力不良率為68.8%、2年級為73.4%及3年級為76.8%,顯示視力隨年齡增加而惡化。

O國中學生因近視就診比率達38.5%

依學生檔與全民健保檔碰檔結果,109學年國中學生中,有70.1%曾於109年因眼與附器疾病就診,有就診者中平均每人就診2.9次,進一步按病因觀察,國中學生中有38.5%曾因近視就診,於各教育階段中為最高,國小為28.5%,高級中等學校為19.1%。

1-3 研究動機與現況分析

檢視學生視力不良率較 高學校之分布,西部地 區明顯多於東部地區的 主要集中於六都及新也 主要條臺東縣外,其他 縣市亦有少數視力不良 率較高之學校。

2-1 研究方法-資料描述

O資料時間:111學年

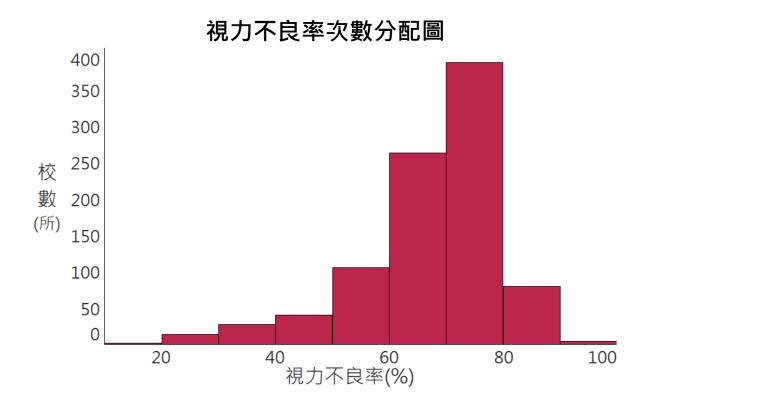
○資料範圍:931所國中

(剔除離島[27校]及視力檢測人數未達10人[5校]之學校)

2-2 研究方法-資料來源

○本部資料: 學生學籍檔、體適能檔、國中會考成績檔、公務統計資料、全國立案短期補習班

O外部資料


- ○大數據資料:內政部(原住民、新住民子女、父母學歷)、衛福部(中低收入戶)
- ○鄉鎮市區資訊:內政部(人口密度、國土現況調查)、財政部 (綜合所得)
- O空間資料:醫療機構資料

2-3 研究方法-模型應變數

○視力不良率= 視力不良學生人數 參加視力檢測學生人數 × 100%

(兩眼裸視視力均0.9以上者為視力正常,否則為視力不良)

2-4 研究方法-模型自變數

	蒐集資料	資料轉換與篩選		
學校	女生占比			
特性	班生數			
	鄉鎮市區綜合所得	學校所在鄉鎮市區之綜合所得[中位數/ 平均數]		
→+ 4 \ \(\alpha\)	學生父母教育程度	[父母/父/母]之[教育年數]或[碩士/學士以上占比]		
社經地位	學校原住民學生人數	學校原住民學生占比		
 \ru \ru	學校新住民子女學生人數	學校新住民子女學生占比		
	學校中低收入家庭學生人數	學校中低收入家庭學生占比		
□□≐売	學校圖書館借閱冊次	學校圖書館平均每生借閱冊次		
閱讀 考試	學生會考成績	學校學生國中會考成績[<mark>平均數</mark>	/中位數]	
与 叫	補習班點位資料	學校周邊[500公尺]內,文理及	外語類 補習班數目	
	學校運動場所面積	學校平均每生運動場所面積		
運動	學生體適能表現	學校學生[跑走 /立定跳遠]百分章	等級[平均數 /中位數]	
	鄉鎮市區體育場所面積	學校所在鄉鎮市區之體育場所面積占比		
區域	鄉鎮市區人口密度	學校所在鄉鎮市區之人口密度		
特性	醫療機構點位資料	學校周邊[2公里]內,具 眼科 之	醫療機構數目 17	

2-5 研究方法-模型自變數

學校特性

女性占比、班生數

社經地位

綜合所得、母親碩士占比、原住民占比、 新住民子女占比、中低收占比

閱讀考試

每生借閱冊次、會考成績、補習班數目

運動

每生運動面積、跑走、體育場所占比

區域特性

人口密度、眼科數目

2-6 研究方法-空間自相關

O全域型空間自相關

以 Moran's I反映空間上相鄰學校其觀察值之相似程度,其值介於±1之間,正表正相關,負表負相關。 **○**以路徑距離70.5公里內為鄰居

口局部空間自相關

測量出區域內自相關程度並找出空間聚集點,以LISA(Local Indicators of Spatial Association)為代表性指標。

2-7 研究方法-多元線性迴歸(MLR)

$$Y = \beta_0 + \sum_{j=1}^k \beta_j X_j + \varepsilon \qquad \varepsilon \sim N(0, \sigma^2 I)$$

2-8 研究方法-地理加權迴歸(GWR)

地理加權迴歸(geographically weighted regression, GWR)模型是一種延伸自傳統迴歸理論的分析方法,加入了空間座標作為加權變項,允許迴歸係數隨空間而變化,能夠具體呈現空間異質性。

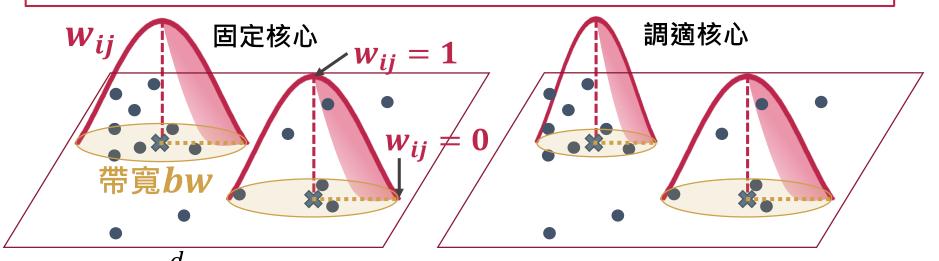
$$Y_i(u_i, v_i) = \beta_0(u_i, v_i) + \sum_{j=1}^k \beta_j(u_i, v_i) X_j(u_i, v_i) + \varepsilon_i(u_i, v_i)$$

其中 $X_j(u_i, v_i)$ 和 $\beta_j(u_i, v_i)$ 分別為學校 (u_i, v_i) 的第j個解釋變數及其迴歸係數, $\varepsilon_i(u_i, v_i)$ 為誤差項

2-9 研究方法-地理加權迴歸(GWR)

$$Y_{i}(u_{i}, v_{i}) = \beta_{0}(u_{i}, v_{i}) + \sum_{j=1}^{k} \beta_{j}(u_{i}, v_{i}) X_{j}(u_{i}, v_{i}) + \varepsilon_{i}(u_{i}, v_{i})$$

 $\beta(u_i,v_i)$ 以加權最小平方法(weighted least square, WLS)進行參數估計,其估計量為 $\hat{\beta}(u_i, v_i) = (X^T W(u_i, v_i) X)^{-1} X^T W(u_i, v_i) Y$


空間權重矩陣
$$W(u_i, v_i) = \begin{pmatrix} w_{i1} & 0 & \dots & 0 \\ 0 & w_{i2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & w_{in} \end{pmatrix}$$
,其中 w_{ij} 為第 i

校與第1校的權重

$$w_{ij} = [1 - (\frac{d_{ij}}{bw})^2]^2$$
 , if $d_{ij} < bw$; $w_{ij} = 0$, otherwise

2-10 研究方法-地理加權迴歸(GWR)

bw為帶寬(Bandwidth),空間核函數的帶寬分為固定核心 (Fixed spatial kernel)及調適核心(Adaptive spatial kernel) 兩種方式。固定核心對於局部迴歸的帶寬設定是以距離遠近為標準;調適核心則以距離內樣本點數量為考量,其帶寬會隨著樣本點疏密程度而改變。

$$w_{ij} = [1 - (\frac{a_{ij}}{bw})^2]^2$$
, if $d_{ij} < bw$; $w_{ij} = 0$, otherwise

2-11 研究方法-多尺度地理加權迴歸(MGWR)

多尺度地理加權迴歸(Multiscale Geographically Weighted Regression,MGWR)模型是在經典地理加權回歸(GWR)模型的基礎上,改進了帶寬選擇的限制,使不同變數可以選擇不同的帶寬,進而反應變數間之空間異質性。

$$Y_i(u_i, v_i) = \beta_{bw_0,0}(u_i, v_i) + \sum_{j=1}^{\kappa} \beta_{bw_j,j}(u_i, v_i) X_j(u_i, v_i) + \varepsilon_i(u_i, v_i)$$

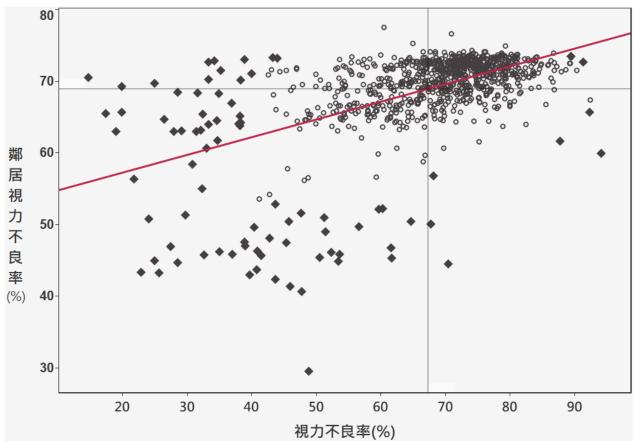
 $\beta_{bw_{j},j}$ 代表每個自變數的迴歸係數會根據各自的帶寬計算

2-12 研究方法

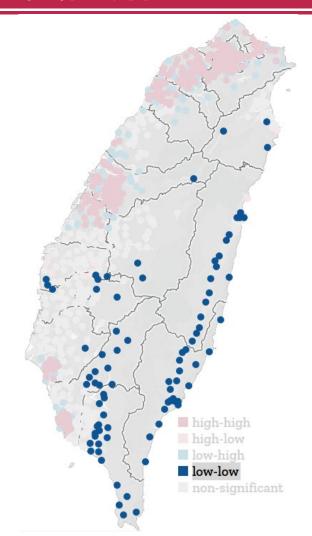
檢視空間 自相關

Moran'I LISA 多元線性 迴歸 (MLR)

AIC 檢視殘差是否 有空間自相關 地理加權 迴歸 (GWR)


AIC 蒙地卡羅檢定 [有無自變數需 要更小帶寬] 多尺度地理 加權迴歸 (MGWR)

AIC 檢視自變數顯著情形、係數 大小及正負。



3-1 實證結果-Moran's I

學校視力不良率之Moran's I為0.247, p值為0.001, 顯示學校之視力不良率呈現空間聚集現象。

3-2 實證結果-LISA

以LISA分析探討個別學校與其鄰 近學校視力不良率的關係:

該校高、鄰近學校也高:396校

該校高、鄰近學校低:10校

該校低、鄰近學校高:122校

該校低、鄰近學校也低:86校

3-3 實證結果-MLR

變數	係數估計值	顯著性
常數	67.356	***
女生占比	1.332	***
班生數	1.800	***
綜合所得	0.935	**
母親碩士占比	-4.578	***
原住民占比	-4.663	***
新住民子女占比	-0.408	
中低收入占比	-0.118	
每生借閱冊次	0.081	
會考成績	4.982	***
補習班數目	1.183	***
每生運動面積	-0.989	**
跑走	-0.626	*
體育場所占比	0.044	
人口密度	1.407	**
眼科數目	-0.344	

AIC=6516.709 $adj R^2 = 0.6044$

殘差*Moran's I=***0.02** p值<**0.05**

3-4 實證結果-GWR

變數	平均值	最小值	中位數	最大值	顯著%
常數	67.75	65.90	67.69	69.22	
女生占比	1.30	0.77	1.28	2.26	96%
班生數	2.02	0.65	2.11	4.62	85%
綜合所得	1.15	0.22	0.82	3.45	33%
母親碩士占比	-4.29	-5.97	-4.58	-3.08	100%
原住民占比	-6.03	-7.37	-6.10	-2.54	100%
新住民子女占比	-0.78	-3.11	-0.40	1.95	40%
中低收入占比	1.58	-1.28	1.57	3.41	48%
每生借閱冊次	-0.06	-0.85	-0.08	0.70	0%
會考成績	4.91	3.14	4.75	7.18	100%
補習班數目	1.04	0.24	1.04	1.81	45%
每生運動面積	-0.83	-1.99	-0.61	0.42	42%
跑走	-0.51	-1.98	-0.66	0.51	30%
體育場所占比	-0.12	-0.47	-0.25	2.58	2%
人口密度	1.23	-0.10	1.21	1.59	38%
眼科數目	-0.42	-1.32	-0.42	1.44	0%

帶寬=501 AIC=6397.708 adj R² =0.6389

蒙地卡羅檢定結果 有3變數需要更小的 帶寬(綜合所得、新 住民子女占比、中低 收入占比)

3-5 實證結果-MGWR

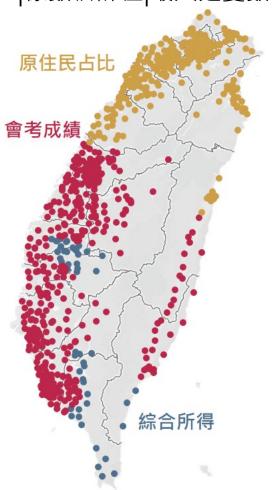
變數	帶寬	平均值	最小值	中位數	最大值	顯著%
常數	888	68.13	67.42	68.14	68.69	
女生占比	563	1.32	1.03	1.37	1.98	100%
班生數	930	1.74	1.63	1.69	2.06	100%
綜合所得	1 37	1.32	-2.00	0.72	10.38	21%
母親碩士占比	930	-3.91	-4.09	-3.91	-3.87	100%
原住民占比	634	-5.58	-6.31	-5.49	-4.48	100%
新住民子女占比	2 97	-0.67	-2.39	-0.47	2.13	34%
中低收入占比	702	1.71	0.76	1.95	2.49	75%
每生借閱冊次	919	0.02	-0.41	0.05	0.39	0%
會考成績	611	5.27	4.53	5.66	5.84	100%
補習班數目	930	1.23	1.10	1.23	1.35	100%
每生運動面積	464	-0.86	-1.59	-0.85	0.36	47%
跑走	381	-0.39	-2.17	-0.44	0.74	23%
體育場所占比	304	-0.15	-0.73	-0.37	3.21	4%
人口密度	930	1.20	1.12	1.19	1.36	100%
眼科數目	913	-0.51	-0.68	-0.53	-0.18	0%

AIC= $\overline{6357.379}$ adj $R^2 = 0.653$

3-6 實證結果-模型比較

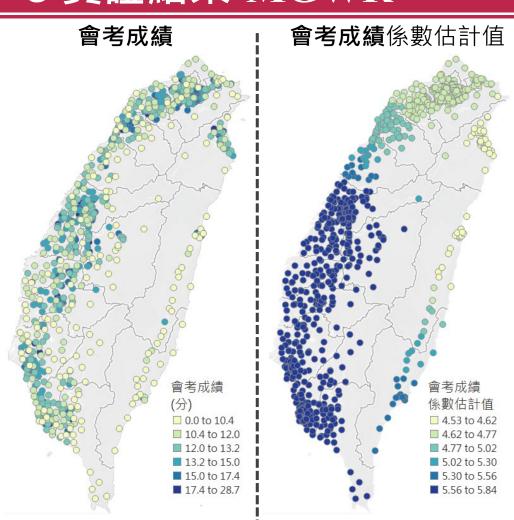
模型指標比較

變數顯著情形及係數正負

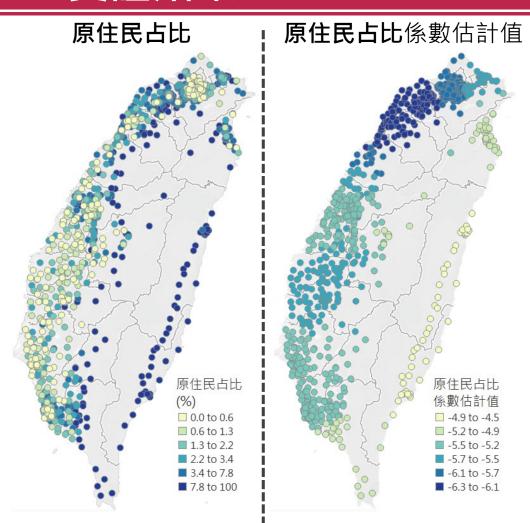

指標	MLR	GWR	MGWR
AIC	6517	6398	6358
adj R²	0.604	0.639	0.653
殘差Moran's I	顯著	不顯著	不顯著

	變數	MLR	GWR	MGWR					
	女生占比			•					
1	班生數			•					
1	綜合所得								
_	母親碩士占比								
	原住民占比								
	新住民子女占比								
	中低收入占比								
	每生借閱冊次								
	會考成績		•	•					
	補習班數目			•					
	每生運動面積								
	跑走								
	體育場所占比								
	人口密度			•					
	眼科數目								

●顯著 ▲部分顯著 係數為正 係數為負 有正有負

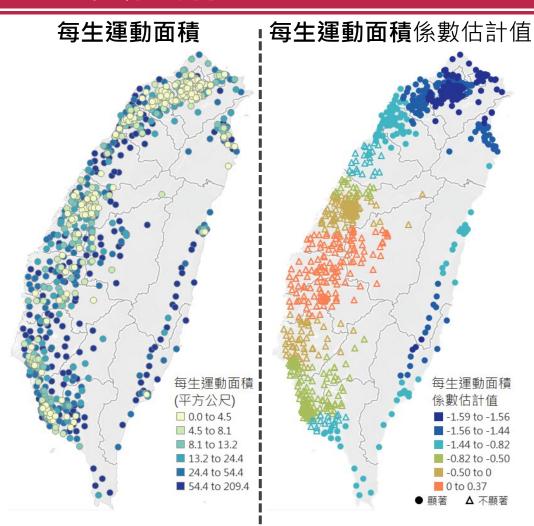

3-7 實證結果-MGWR

|係數估計值|最大之變數


觀察各校最重要變數之 分布,中南部及花東學 校以[會考成績]之|係數 估計值|最大,苗栗以北 及宜蘭學校以[原住民占 比]為最重要變數,另有 少數偏鄉地區學校以[綜 合所得]最為重要。

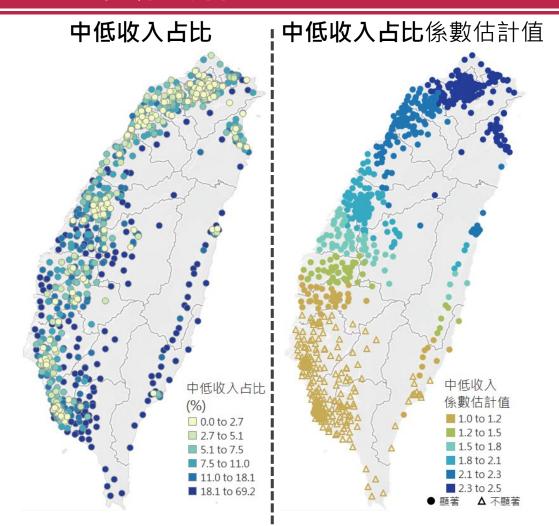
3-8 實證結果-MGWR

[會考成績]於所有學校 均顯著。 整體為會考成績愈高, 其視力不良率愈高,以 中南部學校影響程度較 大(|係數估計值|愈大)。


3-9 實證結果-MGWR

[原住民占比]於所有學校均顯著。

整體為原住民占比愈高,其視力不良率愈低,以桃園新竹一帶影響程度最大(|係數估計值|愈大)。

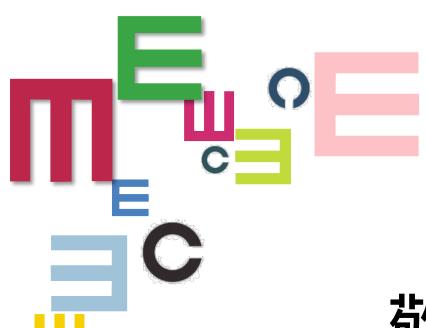

3-10 實證結果-MGWR


[每生運動面積]顯著之 學校位於新竹以北及東 部。

大多為每生運動面積愈高,其視力不良率愈低,以校園運動空間相對較為缺乏之北北基學校影響程度最大(|係數估計值|愈大)。

3-11 實證結果-MGWR

[中低收入占比]除南部學校外均顯著。整體為中低收入占比愈高,其視力不良率愈高,以北北基學校影響程度最大(|係數估計值|



4-1 結論

- ○學生視力不良率較高學校之特性:
 - ○全部學校 原住民占比愈低(桃園新竹學校影響較大)、會考成績愈高 (中南部學校影響較大)、母親碩士占比愈低、班生數愈 高、女性占比愈高、補習班數目愈多及人口密度愈高。
 - ○部分學校 中低收入占比愈高(南部學校除外)、每生運動面積愈低 (新竹以北及東部學校)、學生跑走百分位數愈低、新住民 子女占比愈低、綜合所得愈高。
- ○相較於MLR,MGWR有著更為細緻的模型結果, 各變數的係數大小、係數正負及顯著性會隨著空間 而有所不同,進而呈現出空間異質性。

4-2 建議

- ○以模型結果為教育政策參據,並考量空間異質性, 精準分配教育資源或宣導視力保健。
 - ○針對會考表現較佳學校(中南部優先)或補習班(北部東部優先)加強學生用眼時間之規範
 - o 對學生家長做衛教宣導(全台)
 - ○增加校內運動空間(北北基)
 - ○關心中低收入家庭子女之視力保健情形(北北基)
- ○未來可加入時間變項,以長期資料追蹤學生視力不良率,建立時空地理加權迴歸(GTWR),以得到更嚴謹的實證結果。

敬請指教

教育部統計處